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Abstract
Molecular dynamics computer simulation has been used to compute the self-diffusion
coefficient, D, and shear viscosity, ηs, of soft-sphere fluids, in which the particles interact
through the soft-sphere pair potential, φ(r) = ε(σ/r)n, where n measures the steepness or
stiffness of the potential, ε and σ are a characteristic energy and distance, respectively. The
simulations were carried out on monodisperse systems for a range of n values from the
hard-sphere (n → ∞) limit down to n = 4 over a range of densities. An ideal glass transition
value was estimated from the limit where D and η−1

s → 0 for each value of n. Nucleation of the
crystalline phase was found to intervene prior to the formation of the glass itself, as has been
found previously for hard spheres (i.e. n → ∞). With increasing softness the glass transition
moves further within the solid part of the phase diagram, as predicted by Cardenas and Tosi
(2005 Phys. Lett. A 336 423), although the volume fractions at the glass transition estimated by
the current procedure here are systematically lower than the predictions of that study.

S Supplementary data are available from stacks.iop.org/JPhysCM/20/115102

1. Introduction

The dense packing of soft particles is a process that occurs
widely in nature and in many industrial manufacturing
processes. These ‘jammed’ or ‘glassy’ states can be created
by cooling a thermalized system (e.g. by vibration of the bed
for powders, or by Brownian motion for colloidal systems)
at constant pressure, or by compressing it isothermally
(e.g. see [1]). The temperature route to the jammed state is
complicated by the fact that both the temperature and density
usually are allowed to change simultaneously, which requires a
decoupling of the effects of these two parameters (e.g. see [2]
for a discussion of this subject). In contrast, the application of
pressure under isothermal conditions solely affects the density.
Cooling is much easy to achieve in experiment, whereas in
molecular simulation the two processes can be introduced with
comparable ease, and it is the compression route towards the
glassy state that we follow here.

Hard spheres undergo a fluid-to-crystalline phase transi-
tion above a critical density which is driven purely by config-
urational entropy, while for soft particle enthalpic factors are
important as well. In this study the compression of model flu-

ids into the metastable fluid and solid parts of their phase di-
agrams are undergone using molecular dynamics simulations.
The inverse power or soft-sphere potential is a convenient rep-
resentation of a particle with variable softness,

φ(r) = ε
(σ

r

)n
, (1)

where r is the separation between two particles, σ is a nominal
particle diameter, ε sets the energy scale and n is a parameter
that determines the potential steepness (the softness is ε ∼
n−1). The soft-sphere potential provides a continuous path
from hard spheres (n → ∞) to n > 3 which covers a wide
range of softnesses and particle types. The thermodynamic
properties of the soft-sphere system can be expressed in terms
of a reduced parameter, ρ̃ = ρ(kBT/ε)−3/n where ρ is the
reduced number density (= Nσ 3/V , for N particles in volume
V ), kB is Boltzmann’s constant and T is the temperature.
Therefore the equilibrium part of the phase diagram can be
expressed in terms of the density dependence along a single
value of the reduced temperature, T ∗ = kBT/ε, usually taking
T ∗ = 1 for convenience. The solid–fluid phase boundary as a
function of n is known accurately in the range 0 � n−1 � 0.32
from Gibbs–Duhem integration [3, 4].
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Figure 1. Radial distribution of the hard-sphere fluid at various
packing fractions, given on the figure for N = 2048 systems. The
selected functions are displaced by units of 1 systematically from
each other to help clarify the trends with density. The system
nucleates at ca. ζ = 0.545.

Molecular dynamics, MD, simulations were carried out
for assemblies of particles interacting via the soft-sphere
potential of equation (1), for microcanonical and constant
temperature simulations, the latter by velocity rescaling.
Steepness parameter values down to n = 4 were considered.
The limiting case of n → ∞ is the hard-sphere fluid, which
requires a different ‘event-driven’ procedure to follow its
dynamics. The self-diffusion coefficients of the hard-sphere
limit are known well from previous studies (e.g. see [5]). Most
of the simulations were carried out with N = 2048 particles,
at a reduced temperature, kBT/ε = 1 (see [6] for further
details). All quantities are given in terms of the basic units
of σ , ε and m, the mass of a particle. The definitions for
the computed quantities are standard and may be found, for
example, in [7, 8]. The transport coefficients were obtained
from the appropriate Green–Kubo formula. The density is
expressed here in terms of the nominal packing fraction,
ζ = π Nσ 3/6V . The density of the system was increased
in stages, and the time-averaged quantities collected at each
fixed density. The fluid–solid coexistence densities, ζf and
ζs for the soft-sphere fluid at the various n are already in the
literature, [4]. On compression in the fluid–solid metastable
region of the phase diagram, the system nucleates before it
reaches the glass transition. The nucleation packing fraction,
ζn, is readily identified by a sharp drop in the value of D,
which occurs typically after D has decreased to a value of
ca. 0.01. The appearance of crystalline features in the radial
distribution function is also another signature that crystalline
or polycrystalline nucleation had taken place. In fact, most
molecular simulations of glass formation are carried out using
binary mixtures to frustrate nucleation [9]. There is therefore
a question as to whether simple liquids have a glass transition,
owing to the difficulty in bypassing crystallization on cooling
or compressing these liquids by molecular dynamics.

Figure 2. Radial distribution of the r−5 fluid at various packing
fractions, given on the figure, otherwise as for figure 1. The number
of particles in the simulation cell was 2048. The system nucleated at
ζ = 2.2. The two radial distribution functions shown at this packing
fraction are one prior to and one after nucleation at ζ = 2.2.

Since the attainment of the glassy state and the definition
of the glassy state depend on experimental timescales it is
natural to assume that glass transition is a non-equilibrium
phenomenon. However, there is a line of reasoning based
on the emergence of an ‘entropy crisis’ that there is an
underlying ‘ideal’ or thermodynamic glass transition, at the
so-called Kauzmann temperature for quenched systems (see
e.g. [10, 11]). The glass transition for simple fluids has
been shown to be relatively insensitive to the cooling or
compression rates accessible in simulation [12]. Therefore
for these simple fluids on simulation timescales and much
longer, there should be a prospect that an ‘ideal’ glass can be
estimated by extrapolation to D = 0 for densities higher than
the nucleation values. The glass transition packing fraction,
ζg, has to be located by extrapolation of the self-diffusion
coefficients, D or fluidities (inverse shear viscosity, ηs) to zero
for the states prior to nucleation.

2. Results and discussion

Figure 1 shows several radial distribution functions for the
hard-sphere fluid on either side of the nucleation packing
fraction, ζn. Figure 2 shows a corresponding plot for the soft-
sphere fluid with n = 5 at states in the metastable fluid and
solid branches of the phase diagram. Both systems exhibit a
definite transition from a liquid-like radial distribution function
to that of a crystalline or polycrystalline sample. Particle
configurations for FCC and BCC are characterized by peaks in
the radial distribution function (in units of the position of the
first peak): 1.0, 1.4, 1.7 and 2.0 for FCC, and 1.0, 1.1, 1.6 and
2.0 for BCC. The hard-sphere system appears to be nucleating
into an FCC form whereas because of the broadness of the
peaks in the plot in figure 2, it is not certain what crystalline
form the r−5 system is adopting, although one would expect it
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Figure 3. The inverse self-diffusion coefficient, D−1 against the
packing fraction ζ = π Nσ 3/6V for various n values (given on the
figure), with N = 2048. D is in units of σ(ε/m)1/2 where σ and ε
are the potential parameters from equation (1). The curves are the
predictions of the fit formula given in equation (3) with m = 2 for
self-diffusion coefficients in the range 0.005 < D < 1.0.

to be BCC for such a soft-potential [13]. Nucleation of soft-
sphere fluids (with n = 12) has also been simulated on an MD
timescale elsewhere [14].

The simulation data and associated statistics are given in
supplementary files3. We concentrate discussion mainly on
the self-diffusion coefficients, D, even though the same trends
were exhibited with the fluidities (η−1

s ). The statistics are much
better for D. In figure 3, curves of D−1 against particle packing
fraction for various values of n are shown. D−1 increases more
rapidly with particle packing fraction, and decreases with n
at a given value of ζ . For large n the data converge towards
the ‘hard-sphere’ line, with the limiting hard-sphere diameter
equal to σ . In [6, 7] it was shown that a plot of D against ζ−1

for the soft-particle systems is linear at intermediate densities,

D(n, ζ ) ≡ y(n, ζ ) = a(n)
1

ζ
− b(n), (2)

where a(n) and b(n) are n-dependent constants. This general
form for the density dependence of a transport coefficient dates
back at least to Hildebrand [15]. The intercept value of ζ−1

when D = 0 is defined as ζ−1
i , and ζi = a/b can be taken as an

approximate value of the glass transition packing fraction, ζg.
However, there is a departure from this trend at high packing
fractions in the metastable region, as noted by Woodcock and
Angell [16]. A more accurate representation of the data at high
densities is given by a modification of equation (2),

D(n, ζ ) ≡ ym+1(n, ζ )

c(n) + ym(n, ζ )
(3)

where m is an integer and c(n) is another (small) constant.
This formula has the additional flexibility to achieve a better

3 The supplementary files contain the potential energies per
particle, self-diffusion coefficients and shear viscosities. (available at
stacks.iop.org/JPhysCM/20/115102)

Figure 4. D against ζ−1, where the lines are least square fits to the
diffusion coefficient data in the range 0.005 < D < 1.0 using
equation (3) with m = 2. Fluidity, η−1

s data for supercritical krypton
at 298 K, taken from [35], are also shown on the figure. The
effective packing fraction was calculated from the Lennard-Jones
potential σ for Kr (= 0.3633 nm) [36]. The viscosity, ηs, is in units
of 10−5 Pa s.

fit to the self-diffusion coefficients at high density, and
hence an improved estimate for the glass transition. This
is without sacrificing the linear behaviour of D on ζ−1

evident at intermediate packing fractions. c(n) is a small
positive number, and for low packing fractions the formula
in equation (3) effectively reduces to that in equation (2). At
higher packing fractions close to the glass transition, the new
formula gives a value of D higher than equation (2), which
is consistent with the simulation date (see figure 4 where
D is plotted against ζ−1) and experimental data on simple
molecular systems [18]. By trial and error, the value m = 2 in
equation (3) was found to be about optimum. For equation (3),
the formula for the glass transition packing (i.e. when the
formula in equation (3) predicts D = 0) is also ζi = a/b as
for equation (2), except the non-linear least squares fit values
for a and b will be different in the two cases. The fit formula
of equation (3) can be seen, in figure 4, to reproduce the
linear region at intermediate packing fractions and the high
density behaviour where the simulation data falls above the
extrapolated linear region. The fluidity of krypton at liquid-
like densities and T = 298 K are also given on this figure
for comparison (self-diffusion data at high pressures for simple
liquids are quite rare when compared with the shear viscosity).
These data show a near linear dependence of η−1

s on ζ−1,
which is the same behaviour as for D. Further details on the
experimental data are given in the caption to figure 4.

In figure 4 it may be seen that the slope, a, of the low
and intermediate density regime is almost independent of n,
only showing a noticeable change for the n = 6, 5, and 4
fluids. Consequently, the intercept, ζ−1

g = b/a or the position
of the glass transition is essentially determined by b. Clearly,
b, decreases with softness which means that ζg increases with
softness. A more quantitative explanation may be obtained by

3
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considering the case of hard spheres. From Enskog kinetic
theory, for ζ → 0, D → DB = √

π/16ζ = 0.1108/ζ , which
is the first order approximation. The second approximation
is 1.01724

√
π/16ζ = 0.1127/ζ and the limiting value is

1.019
√

π/16ζ = 0.1129/ζ [17]. In practise, there is an N-
dependence to the values of these parameters on fitting to hard-
sphere molecular dynamics data with equation (2), for example
for ζ > 0.2 this procedure gives, a = 0.103, 0.119 and
0.133 for N = 32, 108 and 109 76, respectively. The first
order approximation is sufficiently accurate for the analytic
treatment below, i.e. a(H S) = 0.111. A least squares fit to
hard-sphere MD data taken from [5] gives for a, b, values of
0.1310(5), 0.241(1) and 0.1124(4), 0.230(5) for ζ above and
below 0.2, respectively. The numbers in brackets refer to the
uncertainty in the last digit. The fits used data down to packing
fractions of 0.0001. Note that in the lower density regime
the inverse density coefficient is within 0.5% of the kinetic
theory prediction. If data in the fit is confined to values in
an intermediate region, 0.05–0.35, the (a, b) parameters are
0.111, 0.181 respectively. Therefore the value of a is very
close to the expected kinetic value for data below ca. ζ � 0.35,
but increases systematically as higher density data are included
in the fit. The value of b goes through a minimum for data sets
confined to an intermediate density range.

From the work of Rosenfeld and Bastea [19, 20],
the density dependence of the self-diffusion coefficient
has been written in terms of the excess entropy D =
DBg(σ ) exp(γ sex/kB), where DB is Boltzmann’s formula for
the self-diffusion coefficient in the dilute gas phase, g(σ ) is
the radial distribution function at contact, γ is a constant,
sex is the excess entropy per particle and kB is Boltzmann’s
constant. Now, at low densities, g(σ ) = (Z − 1)/B2ζ =
(B2ζ + B3ζ

2)/B2ζ , where Z is the compressibility factor, and
B2 and B3 are the second and third virial coefficients. As
sex/kB = −(B2ζ + B3ζ

2/2 + · · ·) then exp(γ sex/kB) =
1 + γ sex/kB + · · · = 1 − γ B2ζ + · · ·. Therefore,

D =
√

π

16ζ
−

√
π

16
(B2γ − B3/B2) = a/ζ − b (4)

where a = √
π/16 = 0.1108, which is a little low for high

density, and b = √
π(4γ − 2.5)/16 taking, B2 = 4 and

B3 = 10 [22]. Therefore to obtain the form, D = a/ζ − b,
it is necessary to consider the equation of state to the level of
the third virial coefficient. For the adopted value of γ = 0.8,
we have b = 0.08 which is significantly smaller than the
simulation data produce. But it is already known that Bastea’s
formula with γ = 0.8 does not match the simulation data well
at low density (see figure 1 in [20]). For γ = 1.1, we get
b = 0.21, which is closer to the simulation value of 0.235(5).
Even though the MD data presented as D against ζ−1 in
relative terms exposes mainly the lower density behaviour, the
low density expansion predicted from equation (4) represents
the simulation data reasonably well in the intermediate density
region and at even higher densities, depending on the accuracy
required.

Turning now to the soft-sphere particles, taking all the
data points, linear fits to D against ζ−1, give a and b values
as a function of the potential exponent, n. The parameter, a

Figure 5. D against ζ−1. Note that D is given on a log scale. The
diffusion coefficient data were fitted in the range 0.005 < D < 0.1,
using equation (3) with m = 2.

increases with softness. Taking the self-diffusion coefficient
data for less then half the density of the fluid at the fluid–solid
coexistence, a has values of 0.139, 0.129, 0.124, 0.122, 0.120
and 0.116 for n = 4, 5, 6, 8, 10 and 12, respectively.
Taking all the fluid data, these numbers increase slightly to
0.142, 0.131, 0.126, 0.124, 0.122 and 0.121. In the ζ → 0
limit, the first order solution from kinetic theory is [17, 19],

D =
√

π

16ζ

(
2kBT

mnε

)2/n 1

A1(n)�(3 − 2/n)
(5)

where m is the mass of the molecule, which goes over to
the hard-sphere kinetic theory solution as n → ∞. (In
passing we note that there is a misprint in table 3 of [19];
the column headings A1 and A2 should be reversed. The
original data are in [17], p. 172.) It is reasonable to use
the same analytic form for the self-diffusion coefficient, D =
a Z/B2ζ

2 exp(γ sex/kB), for the soft spheres as for the hard
spheres, where now the quantities in the formula refer to those
for soft spheres. Expanding this we get, again, D = a/ζ −
b + · · ·. It can be seen from figure 4 that the coefficient a
is only weakly dependent on n. The first order kinetic theory
value from [17] is 0.1108 for n → ∞ and 0.1397 for n = 4,
which is in good agreement with the simulation value (0.139).
The expansion gives, b = a(γ B2(1 − 3/n) − B3/B2), which
increases with n, as is found from the simulation (note that all
quantities are n-dependent now).

In the simulations nucleation was found to occur when
the diffusion coefficient became less than about 0.005, for all
n. Consequently, the glass transition temperature from the
simulation was estimated as the value of ζ at which D → 0,
extrapolating the self-diffusion coefficient data from below ζn.
Figure 5 shows these data fitted by equation (3) with m = 2
in the small-D regime (and this route to the glass transition
is called ‘I’). The estimated value of the glass transition does
depend on the formula used to extrapolate the simulation data
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Table 1. Packing fractions and their ratios for variable n. Key: n, the soft-sphere potential exponent; ζf, the packing fraction of the fluid
phase at coexistence; ζs, the packing fraction of the solid phase at coexistence; ζn, the packing fraction at nucleation of the fluid; ζg, a lower
bound on the packing fraction at the glass transition, estimated by extrapolation of the self-diffusion coefficient to zero according to
D = a/ζ − b fitted in the range 0.005 < D < 0.02. The coexistence packing fractions for the various n were obtained by least squares fitting
to a polynomial the coexistence data of Agrawal and Kofke [3, 4]. ζg, f H = ζf(3/2)3/n is the prediction of the Hunt expression using the
hard-sphere fluid as the coexistence reference, and ζg,s H = ζs(3/2)3/n is the corresponding value using the hard-sphere solid. The bracket
after the ζg value for n = 4 and 5 refers to the statistical uncertainty in the last digit.

n ζf ζs ζn ζg ζs/ζf ζn/ζf ζg/ζf ζn/ζs ζg, f H ζg,s H

4 2.98 3.00 4.1 4.8(1) 1.005 1.37 1.60 1.37 4.05 4.06
5 1.73 1.74 2.2 2.5(1) 1.008 1.27 1.44 1.26 2.21 2.22
6 1.22 1.23 1.5 1.66 1.012 1.23 1.36 1.22 1.49 1.51
7 0.967 0.983 1.15 1.25 1.016 1.19 1.29 1.17 1.15 1.17
8 0.826 0.843 0.975 1.06 1.021 1.18 1.28 1.28 0.96 0.98
9 0.738 0.757 0.860 0.93 1.025 1.17 1.27 1.27 0.84 0.87
10 0.680 0.700 0.78 0.84 1.029 1.15 1.24 1.12 0.77 0.79
12 0.610 0.633 0.671 0.74 1.037 1.10 1.21 1.06 0.68 0.70
15 0.558 0.585 0.605 0.66 1.048 1.08 1.18 1.03 0.61 0.63
18 0.531 0.562 0.595 0.62 1.056 1.12 1.17 1.06 0.57 0.60
36 0.493 0.534 0.555 0.56 1.084 1.13 1.15 1.04 0.51 0.55
72 0.488 0.535 0.525 0.54 1.097 1.08 1.11 0.98 0.49 0.54
288 0.491 0.542 0.53 0.54 1.104 1.08 1.11 0.98 0.49 0.54
HS 0.493 0.545 0.545 0.55 1.105 1.105 1.12 1.00 — —

to D → 0, especially as n decreases, and the nucleation and
glass transition packing fractions move to densities which, in
relative terms, are further into the solid phase density regime.
Another formula which also fits the D(ζ ) data well in the
low D regime is D = a1(ζ

−1 − a2)
a3 where a1, a2 and a3

are empirical constants. Note this formula has the wrong
density dependence as ζ → 0, so it is only applicable for
small values of D close to freezing, and should be treated as
empirical only. This equation was inspired by the formula used
to extrapolate D to the mode coupling temperature, where we
have replaced T by ζ−1 [21]. We call this formula to obtain ζg,
route ‘II’. There is not a rigorous formula, and in fact there is
no apparent concensus about the analytic form for D(ζ ) close
to ζg. We have discussed above, for ζ close to the freezing or
glass transition, that D is not linear in ζ−1. Because of the
curvature of this function, a linear extrapolation against ζ−1

in the smallest D value range provides a lower bound on the
value of ζg (a procedure we refer to as route ‘III’). Using D
values in the range 0.005–0.02, then for n = 4 the estimates of
ζg by routes I, II and III are, 14.8, 3.9 and 4.8, respectively for
the N = 2048 data. The corresponding values for n = 5 are,
2.9, 2.66 and 2.50. It is the route ‘III’ values that are given in
table 1.

The nucleation and glass transition packing fractions
obtained by procedure III are compared with the coexistence
values in table 1. The glass transition for n = 12 of 0.74
(table 1) agrees very well with previous simulation estimates
of 0.75 ± 0.05 [23] and 0.79 ± 0.05 [24], also based on
linear extrapolations to zero D. For hard spheres the glass
transition has been variously estimated to be between 0.57–
0.58 (e.g. see [25]). Using extrapolation formulae I, II and III,
values of 0.580, 0.569 and 0.555, are obtained. The estimated
glass transitions using the fluidity, η−1

s , where ηs is the shear
viscosity, rather than D give values for ζg which are typically
within ca. 5% of the values obtained from D. The scatter is
greater than for the self-diffusion derived numbers however, as

the shear viscosity is a collective property whereas the self-
diffusion coefficient is a single particle property with

√
N

better statistics.
For all n, both the nucleation and glass packing fractions

are in general found at densities greater than the coexisting
fluid and solid densities. Relative to the freezing point
densities, these two points move further into the solid part
of the phase diagram as the interaction becomes softer. For
example, for n = 4, solid coexistence packing fraction is
3.00, and it nucleates at ζ = 4.1 and the glass transition is
estimated to be at a minimum, 4.8. In two cases, n = 72
and n = 288, nucleation occurred at a density in between the
equilibrium coexisting densities of fluid and solid. Cardenas
and Tosi [26] located the glass transition in soft-sphere systems
with a mean-field approach based on a replica-symmetry
breaking method. They also found that the glass transition
lay increasingly further within the solid phase with increasing
softness, although for the range of n covered, their values are
larger than those determined here. For n = 4, 6, 9 and 12 it
was predicted in [26] that ζg = 15, 3.5, 1.5 and 1.1, compared
with �4.8, �1.66, �0.93 and �0.74 obtained in this study,
respectively. From the work of Agraval and Kofke [3, 4],
the freezing packing fractions of the inverse power fluids
are smooth and quite regular as a function of n−1 and well-
represented by a polynomial. However, this is not a monotonic
function, and has a minimum at about n = 72. One might
expect a similar trend for the nucleation packing fraction ζn.
Both functions have similar shapes and ζn can roughly be
viewed as ζf shifted upwards. However, the shift is not uniform
and the amount of the shift depends on the softness. Also
note, that the ζn show more scatter around the average trend
for ζf, as one would expect for a non-equilibrium event, and
the simulations were carried out at finite intervals of packing
fraction, which limits the resolution of ζn. Nevertheless from
the simulation data, it may be concluded that for n > 10 the

5



J. Phys.: Condens. Matter 20 (2008) 115102 D M Heyes and A C Brańka

Table 2. The parameters for the dependence of the self-diffusion coefficient on extent of compression, on the assumption that
D(X) = D0,X exp(−αX X). The parameters are determined close to and just higher than the coexistence fluid density. The symbol, X , is
either packing fraction, ζ , pressure P or compressibility factor, Z .

n − ln(D0,ζ ) αζ − ln(D0,P ) αP − ln(D0,Z) αZ

4 0.821 1.08 2.072 0.002 74 1.274 0.0243
5 0.363 2.13 1.814 0.009 75 1.156 0.0449
6 −0.048 3.30 1.727 0.0198 1.099 0.0626
7 −0.253 4.24 1.519 0.0351 0.984 0.0814
8 −0.561 5.29 1.547 0.0462 0.994 0.0938
9 −0.903 6.41 1.527 0.0577 0.975 0.106
10 −0.882 6.70 1.484 0.0741 0.947 0.119
12 −1.051 7.78 1.349 0.0997 0.856 0.142
15 −1.320 8.85 1.294 0.125 0.785 0.163
18 −1.755 10.29 1.283 0.141 0.754 0.179

ratio is about 1.1 and for n < 10 increases considerably, which
might indicate a change in the nucleation mechanism.

A simple connection between the melting temperature,
Tm, and the glass transition temperature, Tg was proposed
by Hunt [27], that Tg � 2Tm/3. If we take advantage
of the density–temperature scaling unique to the soft-sphere
system [7], this translates into ζg ≡ ζg, f H = ζf(3/2)3/n ,
or ζg ≡ ζg,s H = ζs(3/2)3/n, depending on whether one
scales according to the density of the coexisting fluid or solid,
respectively. These quantities are given as the last two columns
in table 1. These ratios actually agree quite well with the
nucleation packing fractions, ζn, across the softness range,
rather than the estimated glass transition density. The value
based on the packing fraction of the solid at coexistence gives
the slightly better overall agreement with ζn.

For liquids under compression, the coefficient, αD is
often used to characterize the sensitivity of the self-diffusion
coefficient to pressure, on the assumption that D(P) =
D0,P exp(−αP ) (e.g. see [28]). Corresponding dependencies
on the packing fraction, ζ and the compressibility factor, Z =
P/ρT , where ρ is the number density, can be defined. In
the two latter cases, αZ and αζ are the relevant quantities.
A plot of ln(D−1) against Z , for example, for the various n
values states is shown in figure 6. For the softer particles it
is evident from the near linearity of the data with Z at high
pressure (density) that αZ is reasonably constant over a wide
range of the compressed metastable fluid state not too far from
the coexistence density, ζf. These data for a range of n are
presented in table 2. All three definitions of α show a gradual
increase in magnitude with stiffness, and in the hard-sphere
limit, αζ , αP and αZ have values of ca. 12, 0.22 and 0.25,
respectively. These trends are consistent with expectations
that the diffusion coefficient of soft particles decreases less
with increasing pressure than hard particles. We cannot get
close enough to the glass transition in our simulations to
test satisfactorily the often-used Doolittle equation, D =
D0 exp(−αζ ζ/(ζg − ζ )), for example [1].

A simple relationship between the self-diffusion coef-
ficient and the shear viscosity is the well-known Stokes–
Einstein, SE, relationship,

l Dηs = kBT

cπ
, (6)

Figure 6. ln(D−1) against the interaction part of the compressibility
factor, Z . The lines on the figure are polynomial fits to the data up to
O(Z 6). None of the state points shown have nucleated.

where l is a characteristic diameter of the molecule, and
c = 3 and 2, for ‘stick’ and ‘slip’ boundary conditions,
respectively. Although SE strictly only applies to macroscopic
spheres in a Newtonian liquid (in this limit, l is the actual
diameter of the sphere), it has been tested for dense liquids
and found to work remarkably well on the molecular scale
with some flexibility in assigment of the molecular diameter,
l or alternatively choice of the value of the c parameter (see
e.g. [29] p. 262). The optimum value of c is usually found to
be in between the stick and slip limits, depending somewhat
on state point [30]. The main problem in applying SE to
simple molecular fluids is in choosing the value of l, for which
there is no rigorous prescription, especially for the very soft
particles that are considered here. There is a modified SE
expression due to Zwanzig, Dηs/ρ

1/3 = kBT/cπ [31, 32],
where ρ = Nσ 3/V for N particles in volume V , which is
consistent with equation (6) if l ∝ ρ−1/3. Figure 7 compares
the values of c as a function of ζ and n using the definitions
l = σ and l = ρ−1/3, respectively. The latter definition gives
a more constant value of c with ζ and n in the soft-particle
limit, which is closer to the slip value of 2. Even in this case,
there is a gradual, but relatively small, decrease in the value
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Figure 7. Test of the Stokes–Einstein coefficient, c, against ζ for the
set of data for different n values. Key: (a) ‘SE’ is where the length
scale, l in equation (6) is set to the potential characteristic distance,
σ . The curve is a least squares fit to the data from n = 4 to 36 using
the function c = (aζ b + cζ d)/(1 + eζ f + gζ h) where a–h are the fit
parameters. Data for smaller n values are further to the right. (b) ‘SE
1/3’, as for (a) except that the length scale, l = ρ−1/3 in equation (6).

of c with increasing ζ . Nevertheless, this more constant trend
associated with l = ρ−1/3 is reasonable, as with increasing
density the particles become more squashed together and the
first peak in the radial distribution function moves to smaller
separations. This result suggests that for very soft particles the
static properties are dominated by a characteristic lengthscale
(i.e. l here) that is weakly n-dependent but strongly density
dependent. l is proportional to ∼ ρ−1/3, rather than the
σ parameter of the potential as is found close to the hard-
sphere limit. That a bulk property, the average density of the
system, can be used to determine the lengthscale underpinning
a molecular property (i.e. self-diffusion and shear viscosity)
suggests that the precise location of the particles is of less
importance for soft particles than for particles close to the
hard-sphere limit. In this limit there are so many particles
that interact with a given particle with an energy which is a
signifcant fraction of kBT that their precise location in space
becomes less important than for particles in the large-n limit.
This is illustrated in another way, in figure 8, which shows the
configurational part of the pressure plotted against ζ for fluid
and crystalline states. For n = 4–8 it may be seen that the fluid
and solid state data superimpose very well at densities within
the fluid–solid coexistence region and above.

3. Conclusions

Whether hard spheres and the present soft-sphere systems
can be produced on a computer in a truly glassy state is
still open to debate, as the present monodisperse systems
nucleate in the crystalline form before these states are actually
achieved. Nevertheless, the ‘glassy’ density obtained here by
extrapolation for particles of different softnesses provides a

Figure 8. The configurational part of the pressure, Pc, against
packing fraction, ζ for various n values which are indicated on the
figure. Simulation data for the fluid state are shown as symbols, and
the lines are the results of simulations carried out on FCC solid
systems. The vertical bars on the figure indicate the coexisting fluid
and solid densities respectively for each n value (only ζf for n = 4).
The sequence of solid state simulations was carried out in order of
descending density. Note the four curves are displaced vertically to
different extents, by amounts given on the figure, to help distinguish
the curves.

limiting state for the compressed fluid prior to nucleation and
could be useful in the context of thermodynamic descriptions
of an ‘ideal’ glass. The work also shows that the pressure
dependence of the self-diffusion coefficient or viscosity is a
convenient measure of the effective softness of the molecules.
In modern terminology, the soft particles could to be said to
form ‘strong’ glasses whereas the hard sphere is a ‘fragile’
limit of the soft-sphere fluid [33]. (A large fragility reflects
a structured potential energy landscape and the dominance
of thermally activated processes, [34].) It is shown that the
characteristic length scale for n → 4, is determined by
the average density which is only weakly dependent on n
and depends mainly on the density. The potential energy
landscape for these systems is sufficiently ‘shallow’ and
featureless (due to the many interacting particles with a given
particle) that the static properties of these fluids could be
well-described by mean-field formulae or lattice models (see
figure 8 and the accompanying discussion). An improvement
is made to the Hildebrand formula for the density dependence
of the self-diffusion coefficient and fluidity (inverse shear
viscosity), which was shown previously to represent well these
quantities for particles in the softness range considered here at
intermediate densities [6]. The new formula (in equation (3))
fits the transport coefficients at the highest densities accessible
(prior to nucleation). However, the good fit from that analytic
form was not unique and the estimated value of the glass
transition packing fraction was found to depend on the formula
used to perform the extrapolation to zero diffusion coefficient.
An estimate is made of a lower bound on these values for
the different potential exponents, n. With increasing softness
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the glass transition moves further within the solid part of the
phase diagram, as predicted by Cardenas and Tosi [26], but
(probably) not quite to the same extent.
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